R&D PROJECT

Revolutionary Embedded Rail with 3D printing

Acronym

ERRAIL

BUSINESS AREAS

Área Infraestructuras COMSA, S.A.U

PROJECT DURATION

2020-2022

BUDGET 2020 113.189,73 Euros

KEYWORDS Embedded Rail, high-strength concrete, 3D printing

COORDINATOR **MECANIZADOS ASUA**

CALL HAZITEK-2019

Fondo Europeo de Desarrollo Regional (FEDER) "Una manera de hacer Europa"

Eskualde Garapenerako Europar Batasuna Europar Funtsa (EGEF) "Europa egiteko modu bat"

PROJECT CONTENT

State of art

Traditionally, the most commonly used type of track was the so-called ballast track. Among the main advantages associated with this track, its relatively low cost of construction, its high elasticity, its easy preservation at a moderate cost or its ability to absorb noise stands out.

General objectives

Develop a new solution for embedded rails by additive manufacturing in order to respond efficiently to the problems detected in the embedded rail manufacturing processes. Specifically, the technological objectives are:

- Development of new high-strength concretes with specific slags for 3D printing for the railway sector
- New strategies for structural reinforcement of embedded rails for their manufacture in a new 3D printing cell
- Optimization of the structural topology of embedded rail systems for their manufacture in the new 3D printing cell
- New process control algorithms

Tasks

- I. Investigation of specific concrete forms for 3D printing with slags
- II. Research into railway 3D printing
- III. Research in optimized structural topology
- IV. Investigation of construction methods and execution on the ground
- V. Analysis and preventive maintenance
- VI. Project management and dissemination

Project conclusions

This Project is in execution period